Signal recovery using expectation consistent approximation for linear observations
Abstract: A signal recovery scheme is developed for linear observation systems based on expectation consistent (EC) mean field approximation. Approximate message passing (AMP) is known to be consistent with the results obtained using the replica theory, which is supposed to be exact in the large system limit, when each entry of the observation matrix is independently generated from an identical distribution. However, this is not necessarily the case for general matrices. We show that EC recovery exhibits consistency with the replica theory for a wider class of random observation matrices. This is numerically confirmed by experiments for the Bayesian optimal signal recovery of compressed sensing using random row-orthogonal matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.