Papers
Topics
Authors
Recent
2000 character limit reached

From multiple unitarity cuts to the coproduct of Feynman integrals

Published 15 Jan 2014 in hep-th and hep-ph | (1401.3546v2)

Abstract: We develop techniques for computing and analyzing multiple unitarity cuts of Feynman integrals, and reconstructing the integral from these cuts. We study the relations among unitarity cuts of a Feynman integral computed via diagrammatic cutting rules, the discontinuity across the corresponding branch cut, and the coproduct of the integral. For single unitarity cuts, these relations are familiar. Here we show that they can be generalized to sequences of unitarity cuts in different channels. Using concrete one- and two-loop scalar integral examples we demonstrate that it is possible to reconstruct a Feynman integral from either single or double unitarity cuts. Our results offer insight into the analytic structure of Feynman integrals as well as a new approach to computing them.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.