Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature (1401.3216v5)

Published 14 Jan 2014 in math.DG

Abstract: In this paper we consider Riemannian manifolds $(Mn,g)$ of dimension $n \geq 5$, with semi-positive $Q$-curvature and non-negative scalar curvature. Under these assumptions we prove $(i)$ the Paneitz operator satisfies a strong maximum principle; $(ii)$ the Paneitz operator is a positive operator; and $(iii)$ its Green's function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive $Q$-curvature. Modifying the test function construction of Esposito-Robert, we show that it is possible to choose an initial conformal metric so that the flow has a sequential limit which is smooth and positive, and defines a conformal metric of constant positive $Q$-curvature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.