Energy-aware Load Balancing Policies for the Cloud Ecosystem
Abstract: The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.