On weakly $\frak{F}_{s}$-quasinormal subgroups of finite groups
Abstract: Let $\mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $\mathfrak{F}{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(H\cap T)H{G}/H_{G}\leq Z_{\mathfrak{F}}(G/H_{G})$, where $Z_{\mathfrak{F}}(G/H_{G})$ denotes the $\mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structure of finite groups by using the concept of weakly $\mathfrak{F}_{s}$-quasinormal subgroups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.