Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite volumes and mixed Petrov-Galerkin finite elements : the unidimensional problem

Published 4 Jan 2014 in math.NA | (1401.0824v1)

Abstract: For Laplace operator in one space dimension, we propose to formulate the heuristic finite volume method with the help of mixed Petrov-Galerkin finite elements. Weighting functions for gradient discretization are parameterized by some universal function. We propose for this function a compatibility interpolation condition and we prove that such a condition is equivalent to the inf-sup property when studying stability of the numerical scheme. In the case of stable scheme and under two distinct hypotheses concerning the regularity of the solution, we demonstrate convergence of the finite volume method in appropriate Hilbert spaces and with optimal order of accuracy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.