Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm

Published 23 Dec 2013 in stat.ME | (1312.6536v1)

Abstract: In this paper we first describe the class of log-Gaussian Cox processes (LGCPs) as models for spatial and spatio-temporal point process data. We discuss inference, with a particular focus on the computational challenges of likelihood-based inference. We then demonstrate the usefulness of the LGCP by describing four applications: estimating the intensity surface of a spatial point process; investigating spatial segregation in a multi-type process; constructing spatially continuous maps of disease risk from spatially discrete data; and real-time health surveillance. We argue that problems of this kind fit naturally into the realm of geostatistics, which traditionally is defined as the study of spatially continuous processes using spatially discrete observations at a finite number of locations. We suggest that a more useful definition of geostatistics is by the class of scientific problems that it addresses, rather than by particular models or data formats.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.