Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence

Published 20 Dec 2013 in cs.NE, cs.LG, and stat.ML | (1312.6002v3)

Abstract: Contrastive Divergence (CD) and Persistent Contrastive Divergence (PCD) are popular methods for training the weights of Restricted Boltzmann Machines. However, both methods use an approximate method for sampling from the model distribution. As a side effect, these approximations yield significantly different biases and variances for stochastic gradient estimates of individual data points. It is well known that CD yields a biased gradient estimate. In this paper we however show empirically that CD has a lower stochastic gradient estimate variance than exact sampling, while the mean of subsequent PCD estimates has a higher variance than exact sampling. The results give one explanation to the finding that CD can be used with smaller minibatches or higher learning rates than PCD.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.