Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions
Abstract: Symmetries of the periodic Toda lattice are expresssed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Jacobi matrices. Using these symmetries, the phase space of the lattice with Dirichlet boundary conditions is embedded into the phase space of a higher-dimensional periodic lattice. As an application, we obtain a Birkhoff normal form and a KAM theorem for the lattice with Dirichlet boundary conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.