Papers
Topics
Authors
Recent
2000 character limit reached

Wavelet-Based Scalar-on-Function Finite Mixture Regression Models

Published 2 Dec 2013 in stat.ME | (1312.0652v1)

Abstract: Classical finite mixture regression is useful for modeling the relationship between scalar predictors and scalar responses arising from subpopulations defined by the differing associations between those predictors and responses. Here we extend the classical finite mixture regression model to incorporate functional predictors by taking a wavelet-based approach in which we represent both the functional predictors and the component-specific coefficient functions in terms of an appropriate wavelet basis. In the wavelet representation of the model, the coefficients corresponding to the functional covariates become the predictors. In this setting, we typically have many more predictors than observations. Hence we use a lasso-type penalization to perform variable selection and estimation. We also consider an adaptive version of our wavelet-based model. We discuss the specification of the model, provide a fitting algorithm, and apply and evaluate our method using both simulations and a real data set from a study of the relationship between cognitive ability and diffusion tensor imaging measures in subjects with multiple sclerosis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.