Minimal Supersolutions of Convex BSDEs under Constraints (1311.6910v2)
Abstract: We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form $dZ = {\Delta}dt + {\Gamma}dW$. The generator may depend on the decomposition $({\Delta},{\Gamma})$ and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in ${\Delta}$ and ${\Gamma}$. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou's lemma and $L1$-lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.