A deformation of quantum affine algebra in squashed WZNW models (1311.4696v1)
Abstract: We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten (WZNW) models at the classical level. The target space is given by squashed S3 and the isometry is SU(2)_L x U(1)_R. It is known that SU(2)_L is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1)_R is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally two degenerate limits are discussed.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.