Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input (1311.3458v3)

Published 14 Nov 2013 in math.PR

Abstract: We consider a model describing a neuron and the input it receives from its dendritic tree when this input is a random perturbation of a periodic deterministic signal, driven by an Ornstein-Uhlenbeck process. The neuron itself is modeled by a variant of the classical Hodgkin-Huxley model. Using the existence of an accessible point where the weak Hoermander condition holds and the fact that the coefficients of the system are analytic, we show that the system is non-degenerate. The existence of a Lyapunov function allows to deduce the existence of (at most a finite number of) extremal invariant measures for the process. As a consequence, the complexity of the system is drastically reduced in comparison with the deterministic system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.