Papers
Topics
Authors
Recent
2000 character limit reached

Wadge Hardness in Scott Spaces and Its Effectivization

Published 2 Nov 2013 in cs.LO and math.LO | (1311.0331v1)

Abstract: We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.