Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Iteration Complexity Analysis of Block Coordinate Descent Methods (1310.6957v2)

Published 25 Oct 2013 in math.OC and stat.ME

Abstract: In this paper, we provide a unified iteration complexity analysis for a family of general block coordinate descent (BCD) methods, covering popular methods such as the block coordinate gradient descent (BCGD) and the block coordinate proximal gradient (BCPG), under various different coordinate update rules. We unify these algorithms under the so-called Block Successive Upper-bound Minimization (BSUM) framework, and show that for a broad class of multi-block nonsmooth convex problems, all algorithms covered by the BSUM framework achieve a global sublinear iteration complexity of $O(1/r)$, where r is the iteration index. Moreover, for the case of block coordinate minimization (BCM) where each block is minimized exactly, we establish the sublinear convergence rate of $O(1/r)$ without per block strong convexity assumption. Further, we show that when there are only two blocks of variables, a special BSUM algorithm with Gauss-Seidel rule can be accelerated to achieve an improved rate of $O(1/r2)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.