Papers
Topics
Authors
Recent
2000 character limit reached

Cuplength estimates in Morse cohomology (1310.5080v2)

Published 18 Oct 2013 in math.SG and math.DG

Abstract: The main goal of this paper is to give a unified treatment to many known cuplength estimates. As the base case, we prove that for $C0$-perturbations of a function which is Morse-Bott along a closed submanifold, the number of critical points is bounded below in terms of the cuplength of that critical submanifold. As we work with rather general assumptions the proof also applies in a variety of Floer settings. For example, this proves lower bounds for the number of fixed points of Hamiltonian diffeomorphisms, Hamiltonian chords for Lagrangian submanifolds, translated points of contactomorphisms, and solutions to a Dirac-type equation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.