Papers
Topics
Authors
Recent
2000 character limit reached

Extreme waves statistics for Ablowitz-Ladik system (1310.4406v4)

Published 16 Oct 2013 in nlin.SI

Abstract: We examine statistics of waves for the problem of modulation instability development in the framework of discrete integrable Ablowitz-Ladik (AL) system. Modulation instability depends on one free parameter h that has the meaning of the coupling between the nodes on the lattice. For strong coupling h<<1 the probability density functions (PDFs) for waves amplitudes coincide with that for the continuous classical Nonlinear Schrodinger (NLS) equation; the PDFs for both systems are very close to Rayleigh ones. When the coupling is weak h~1, there appear highly localized waves with very large amplitudes, that drastically change the PDFs to significantly non-Rayleigh ones, with so-called "fat tails" when the probability of a large wave occurrence is by several orders of magnitude higher than that predicted by the linear theory. Evolution of amplitudes for such rogue waves with time is similar to that of the Peregrine solution for the classical NLS equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.