Numerical Methods for a Nonlinear BVP Arising in Physical Oceanography (1310.2075v1)
Abstract: In this paper we report and compare the numerical results for an ocean circulation model obtained by the classical truncated boundary formulation, the free boundary approach and a quasi-uniform grid treatment of the problem. We apply a shooting method to the truncated boundary formulation and finite difference methods to both the free boundary approach and the quasi-uniform grid treatment. Using the shooting method, supplemented by the Newton's iterations, we show that the ocean circulation model cannot be considered as a simple test case. In fact, for this method we are forced to use as initial iterate a value close to the correct missing initial condition in order to be able to get a convergent numerical solution. The reported numerical results allow us to point out how the finite difference method with a quasi-uniform grid is the less demanding approach and that the free boundary approach provides a more reliable formulation than the classical truncated boundary formulation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.