Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel coordinate descent for the Adaboost problem (1310.1840v1)

Published 7 Oct 2013 in cs.LG, math.OC, and stat.ML

Abstract: We design a randomised parallel version of Adaboost based on previous studies on parallel coordinate descent. The algorithm uses the fact that the logarithm of the exponential loss is a function with coordinate-wise Lipschitz continuous gradient, in order to define the step lengths. We provide the proof of convergence for this randomised Adaboost algorithm and a theoretical parallelisation speedup factor. We finally provide numerical examples on learning problems of various sizes that show that the algorithm is competitive with concurrent approaches, especially for large scale problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube