Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison

Published 7 Oct 2013 in math.AG | (1310.1830v2)

Abstract: Let S be a K3 surface and assume for simplicity that it does not contain any (-2)-curve. Using coherent systems, we express every non-simple Lazarsfeld-Mukai bundle on S as an extension of two sheaves of some special type, that we refer to as generalized Lazarsfeld-Mukai bundles. This has interesting consequences concerning the Brill-Noether theory of curves C lying on S. From now on, let g denote the genus of C and A be a complete linear series of type gr_d on C such that d<= g-1 and the corresponding Brill-Noether number is negative. First, we focus on the cases where A computes the Clifford index; if r>1 and with only some completely classified exceptions, we show that A coincides with the restriction to C of a line bundle on S. This is a refinement of Green and Lazarsfeld's result on the constancy of the Clifford index of curves moving in the same linear system. Then, we study a conjecture of Donagi and Morrison predicting that, under no hypothesis on its Clifford index, A is contained in a gs_e which is cut out from a line bundle on S and satisfies e<= g-1. We provide counterexamples to the last inequality already for r=2. A slight modification of the conjecture, which holds for r=1,2, is proved under some hypotheses on the pair (C,A) and its deformations. We show that the result is optimal (in the sense that our hypotheses cannot be avoided) by exhibiting, in the Appendix, some counterexamples obtained jointly with Andreas Leopold Knutsen.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.