Papers
Topics
Authors
Recent
2000 character limit reached

Stability of point spectrum for three-state quantum walks on a line

Published 30 Sep 2013 in quant-ph | (1309.7835v2)

Abstract: Evolution operators of certain quantum walks possess, apart from the continuous part, also point spectrum. The existence of eigenvalues and the corresponding stationary states lead to partial trapping of the walker in the vicinity of the origin. We analyze the stability of this feature for three-state quantum walks on a line subject to homogenous coin deformations. We find two classes of coin operators that preserve the point spectrum. These new classes of coins are generalizations of coins found previously by different methods and shed light on the rich spectrum of coins that can drive discrete-time quantum walks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.