Papers
Topics
Authors
Recent
2000 character limit reached

The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case (1309.5106v2)

Published 19 Sep 2013 in math.PR, math-ph, and math.MP

Abstract: We consider the spectral statistics of large random band matrices on mesoscopic energy scales. We show that the two-point correlation function of the local eigenvalue density exhibits a universal power law behaviour that differs from the Wigner-Dyson-Mehta statistics. This law had been predicted in the physics literature by Altshuler and Shklovskii [4]; it describes the correlations of the eigenvalue density in general metallic samples with weak disorder. Our result rigorously establishes the Altshuler-Shklovskii formulas for band matrices. In two dimensions, where the leading term vanishes owing to an algebraic cancellation, we identify the first non-vanishing term and show that it differs substantially from the prediction of Kravtsov and Lerner [33].

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.