Papers
Topics
Authors
Recent
2000 character limit reached

Anderson Localization Phenomenon in One-dimensional Elastic Systems

Published 17 Sep 2013 in physics.class-ph and cond-mat.mes-hall | (1309.4395v1)

Abstract: The phenomenon of Anderson localization of waves in elastic systems is studied. We analyze this phenomenon in two different set of systems: disordered linear chains of harmonic oscillators and disordered rods which oscillate with torsional waves. The first set is analyzed numerically whereas the second one is studied both experimentally and theoretically. In particular, we discuss the localization properties of the waves as a function of the frequency. In doing that we have used the inverse participation ratio, which is related to the localization length. We find that the normal modes localize exponentially according to Anderson theory. In the elastic systems, the localization length decreases with frequency. This behavior is in contrast with what happens in analogous quantum mechanical systems, for which the localization length grows with energy. This difference is explained by means of the properties of the re ection coefficient of a single scatterer in each case.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.