Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Extension of the Well-Posedness Concept for Fractional Differential Equations of Caputo's Type (1309.4245v3)

Published 17 Sep 2013 in math.CA

Abstract: It is well known that, under standard assumptions, initial value problems for fractional ordinary differential equations involving Caputo-type derivatives are well posed in the sense that a unique solution exists and that this solution continuously depends on the given function, the initial value and the order of the derivative. Here we extend this well-posedness concept to the extent that we also allow the location of the starting point of the differential operator to be changed, and we prove that the solution depends on this parameter in a continuous way too if the usual assumptions are satisfied. Similarly, the solution to the corresponding terminal value problems depends on the location of the starting point and of the terminal point in a continuous way too.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube