Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Jacobian algebras with periodic module category and exponential growth (1309.2708v4)

Published 11 Sep 2013 in math.RT

Abstract: The Jacobian algebra associated to a triangulation of a closed surface $S$ with a collection of marked points $M$ is (weakly) symmetric and tame. We show that for these algebras the Auslander-Reiten translate acts 2-periodical on objects. Moreover, we show that excluding only the case of a sphere with $4$ (or less) punctures, these algebras are of exponential growth. These four properties implies that there is a new family of algebras symmetric, tame and with periodic module category. As a consequence of the 2-periodical actions of the Auslander-Reiten translate on objects, we have that the Auslander-Reiten quiver of the generalized cluster category $\cC_{(S,M)}$ consists only of stable tubes of rank $1$ or $2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.