Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An Overview of the Relationship between Group Theory and Representation Theory to the Special Functions in Mathematical Physics (1309.2544v1)

Published 10 Sep 2013 in math-ph and math.MP

Abstract: Advances in mathematical physics during the 20th century led to the discovery of a relationship between group theory and representation theory with the theory of special functions. Specifically, it was discovered that many of the special functions are (1) specific matrix elements of matrix representations of Lie groups, and (2) basis functions of operator representations of Lie algebras. By viewing the special functions in this way, it is possible to derive many of their properties that were originally discovered using classical analysis, such as generating functions, differential relations, and recursion relations. This relationship is of interest to physicists due to the fact that many of the common special functions, such as Hermite polynomials and Bessel functions, are related to remarkably simple Lie groups used in physics. Unfortunately, much of the literature on this subject remains inaccessible to undergraduate students. The purpose of this project is to research the existing literature and to organize the results, presenting the information in a way that can be understood at the undergraduate level. The primary objects of study will be the Heisenberg group and its relationship to the Hermite polynomials, as well as the Euclidean group in the plane and its relationship to the Bessel functions. The ultimate goal is to make the results relevant for undergraduate students who have studied quantum mechanics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.