Papers
Topics
Authors
Recent
2000 character limit reached

Free structures in division rings

Published 29 Aug 2013 in math.RA | (1308.6602v1)

Abstract: Makar-Limanov's conjecture states that if a division ring D is finitely generated and infinite dimensional over its center k then D contains a free k-subalgebra of rank 2. In this work, we will investigate the existence of such structures in D, the division ring of fractions of the skew polynomial ring L[t;\sigma], where t is a variable and $\sigma$ is a k-automorphism of L. For instance, we prove Makar-Limanov's conjecture when either L is the function field of an abelian variety or the function field of the n-dimensional projective space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.