Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Frequency-domain algorithm for the Lorenz-gauge gravitational self-force (1308.5223v2)

Published 23 Aug 2013 in gr-qc

Abstract: State-of-the-art computations of the gravitational self-force (GSF) on massive particles in black hole spacetimes involve numerical evolution of the metric perturbation equations in the time-domain, which is computationally very costly. We present here a new strategy, based on a frequency-domain treatment of the perturbation equations, which offers considerable computational saving. The essential ingredients of our method are (i) a Fourier-harmonic decomposition of the Lorenz-gauge metric perturbation equations and a numerical solution of the resulting coupled set of ordinary equations with suitable boundary conditions; (ii) a generalized version of the method of extended homogeneous solutions [Phys. Rev. D {\bf 78}, 084021 (2008)] used to circumvent the Gibbs phenomenon that would otherwise hamper the convergence of the Fourier mode-sum at the particle's location; and (iii) standard mode-sum regularization, which finally yields the physical GSF as a sum over regularized modal contributions. We present a working code that implements this strategy to calculate the Lorenz-gauge GSF along eccentric geodesic orbits around a Schwarzschild black hole. The code is far more efficient than existing time-domain methods; the gain in computation speed (at a given precision) is about an order of magnitude at an eccentricity of 0.2, and up to three orders of magnitude for circular or nearly circular orbits. This increased efficiency was crucial in enabling the recently reported calculation of the long-term orbital evolution of an extreme mass ratio inspiral [Phys. Rev. D {\bf 85}, 061501(R) (2012)]. Here we provide full technical details of our method to complement the above report.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube