Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On estimation of the noise variance in high-dimensional probabilistic principal component analysis (1308.3890v2)

Published 18 Aug 2013 in math.ST and stat.TH

Abstract: In this paper, we develop new statistical theory for probabilistic principal component analysis models in high dimensions. The focus is the estimation of the noise variance, which is an important and unresolved issue when the number of variables is large in comparison with the sample size. We first unveil the reasons of a widely observed downward bias of the maximum likelihood estimator of the variance when the data dimension is high. We then propose a bias-corrected estimator using random matrix theory and establish its asymptotic normality. The superiority of the new (bias-corrected) estimator over existing alternatives is first checked by Monte-Carlo experiments with various combinations of $(p, n)$ (dimension and sample size). In order to demonstrate further potential benefits from the results of the paper to general probability PCA analysis, we provide evidence of net improvements in two popular procedures (Ulfarsson and Solo, 2008; Bai and Ng, 2002) for determining the number of principal components when the respective variance estimator proposed by these authors is replaced by the bias-corrected estimator. The new estimator is also used to derive new asymptotics for the related goodness-of-fit statistic under the high-dimensional scheme.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube