Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves (1308.3864v1)

Published 18 Aug 2013 in math.AG and math.NT

Abstract: Let K be an algebraically closed field which is complete with respect to a nontrivial, non-Archimedean valuation and let \Lambda be its value group. Given a smooth, proper, connected K-curve X and a skeleton \Gamma of the Berkovich analytification X\an, there are two natural real tori which one can consider: the tropical Jacobian Jac(\Gamma) and the skeleton of the Berkovich analytification Jac(X)\an. We show that the skeleton of the Jacobian is canonically isomorphic to the Jacobian of the skeleton as principally polarized tropical abelian varieties. In addition, we show that the tropicalization of a classical Abel-Jacobi map is a tropical Abel-Jacobi map. As a consequence of these results, we deduce that \Lambda-rational principal divisors on \Gamma, in the sense of tropical geometry, are exactly the retractions of principal divisors on X. We actually prove a more precise result which says that, although zeros and poles of divisors can cancel under the retraction map, in order to lift a \Lambda-rational principal divisor on \Gamma to a principal divisor on X it is never necessary to add more than g extra zeros and g extra poles. Our results imply that a continuous function F:\Gamma -> R is the restriction to \Gamma of -log|f| for some nonzero meromorphic function f on X if and only if F is a \Lambda-rational tropical meromorphic function, and we use this fact to prove that there is a rational map f : X --> P3 whose tropicalization, when restricted to \Gamma, is an isometry onto its image.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube