Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Hopf structure of some dual operator algebras (1308.2752v1)

Published 13 Aug 2013 in math.OA and math.FA

Abstract: We study the Hopf structure of a class of dual operator algebras corresponding to certain semigroups. This class of algebras arises in dilation theory, and includes the noncommutative analytic Toeplitz algebra and the multiplier algebra of the Drury-Arveson space, which correspond to the free semigroup and the free commutative semigroup respectively. The preduals of the algebras in this class naturally form Hopf (convolution) algebras. The original algebras and their preduals form (non-self-adjoint) dual Hopf algebras in the sense of Effros and Ruan. We study these algebras from this perspective, and obtain a number of results about their structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube