Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Rigid Supersymmetry on 5-dimensional Riemannian Manifolds and Contact Geometry (1308.1567v4)

Published 7 Aug 2013 in hep-th

Abstract: In this note we generalize the methods of [1][2][3] to 5-dimensional Riemannian manifolds M. We study the relations between the geometry of M and the number of solutions to a generalized Killing spinor equation obtained from a 5-dimensional supergravity. The existence of 1 pair of solutions is related to almost contact metric structures. We also discuss special cases related to $M = S1 \times M4$, which leads to M being foliated by submanifolds with special properties, such as Quaternion-Kahler. When there are 2 pairs of solutions, the closure of the isometry sub-algebra generated by the solutions requires M to be S3 or T3-fibration over a Riemann surface. 4 pairs of solutions pin down the geometry of M to very few possibilities. Finally, we propose a new supersymmetric theory for N = 1 vector multiplet on K-contact manifold admitting solutions to the Killing spinor equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.