Regions of Stability for a Linear Differential Equation with Two Rationally Dependent Delays (1308.1427v1)
Abstract: Stability analysis is performed for a linear differential equation with two delays. Geometric arguments show that when the two delays are rationally dependent, then the region of stability increases. When the ratio has the form 1/n, this study finds the asymptotic shape and size of the stability region. For example, a delay ration of 1/3 asymptotically produces a stability region 44.3% larger than any nearby delay ratios, showing extreme sensitivity in the delays. The study provides a systematic and geometric approach to finding the eigenvalues on the boundary of stability for this delay differential equation. A nonlinear model with two delays illustrates how our methods can be applied.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.