Papers
Topics
Authors
Recent
2000 character limit reached

Equations of tropical varieties (1308.0042v3)

Published 31 Jul 2013 in math.AG

Abstract: We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry. Using a category of semiring schemes, we construct tropical hypersurfaces as schemes over idempotent semirings such as $\mathbb{T} = (\mathbb{R}\cup {-\infty}, \mathrm{max}, +)$ by realizing them as solution sets to explicit systems of tropical equations that are uniquely determined by idempotent module theory. We then define a tropicalization functor that sends closed subschemes of a toric variety over a ring R with non-archimedean valuation to closed subschemes of the corresponding tropical toric variety. Upon passing to the set of $\mathbb{T}$-points this reduces to Kajiwara-Payne's extended tropicalization, and in the case of a projective hypersurface we show that the scheme structure determines the multiplicities attached to the top-dimensional cells. By varying the valuation, these tropicalizations form algebraic families of $\mathbb{T}$-schemes parameterized by a moduli space of valuations on R that we construct. For projective subschemes, the Hilbert polynomial is preserved by tropicalization, regardless of the valuation. We conclude with some examples and a discussion of tropical bases in the scheme-theoretic setting.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.