Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Resource Efficient Gadgets for Compiling Adiabatic Quantum Optimization Problems (1307.8041v1)

Published 30 Jul 2013 in quant-ph

Abstract: We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube