Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Persistence, permanence and global stability for an n-dimensional Nicholson system (1307.7352v1)

Published 28 Jul 2013 in math.DS and math.CA

Abstract: For a Nicholson's blowflies system with patch structure and multiple discrete delays, we analyze several features of the global asymptotic behavior of its solutions. It is shown that if the spectral bound of the community matrix is non-positive, then the population becomes extinct on each patch, whereas the total population uniformly persists if the spectral bound is positive. Explicit uniform lower and upper bounds for the asymptotic behavior of solutions are also given. When the population uniformly persists, the existence of a unique positive equilibrium is established, as well as a sharp criterion for its absolute global asymptotic stability, improving results in the recent literature. While our system is not cooperative, several sharp threshold-type results about its dynamics are proven, even when the community matrix is reducible, a case usually not treated in the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube