Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Embeddability of generalized wreath products and box spaces (1307.3122v1)

Published 11 Jul 2013 in math.GR and math.MG

Abstract: Given two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general metric spaces X,Y,Z and derive a condition, called the (delta-polynomial) path lifting property, such that coarse embeddability of X,Y and Z implies coarse embeddability of X\wr_Z Y. We also give bounds on the compression of X\wr_Z Y in terms of delta and the compressions of X,Y and Z. Next, we investigate the stability of the property of admitting a box space which coarsely embeds into a Hilbert space under the taking of wreath products. We show that if an infinite finitely generated residually finite group H has a coarsely embeddable box space, then G\wr H has a coarsely embeddable box space if G is finitely generated abelian. This leads, in particular, to new examples of bounded geometry coarsely embeddable metric spaces without property A.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.