Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better Approximation Bounds for the Joint Replenishment Problem (1307.2531v1)

Published 9 Jul 2013 in cs.DS

Abstract: The Joint Replenishment Problem (JRP) deals with optimizing shipments of goods from a supplier to retailers through a shared warehouse. Each shipment involves transporting goods from the supplier to the warehouse, at a fixed cost C, followed by a redistribution of these goods from the warehouse to the retailers that ordered them, where transporting goods to a retailer $\rho$ has a fixed cost $c_\rho$. In addition, retailers incur waiting costs for each order. The objective is to minimize the overall cost of satisfying all orders, namely the sum of all shipping and waiting costs. JRP has been well studied in Operations Research and, more recently, in the area of approximation algorithms. For arbitrary waiting cost functions, the best known approximation ratio is 1.8. This ratio can be reduced to 1.574 for the JRP-D model, where there is no cost for waiting but orders have deadlines. As for hardness results, it is known that the problem is APX-hard and that the natural linear program for JRP has integrality gap at least 1.245. Both results hold even for JRP-D. In the online scenario, the best lower and upper bounds on the competitive ratio are 2.64 and 3, respectively. The lower bound of 2.64 applies even to the restricted version of JRP, denoted JRP-L, where the waiting cost function is linear. We provide several new approximation results for JRP. In the offline case, we give an algorithm with ratio 1.791, breaking the barrier of 1.8. In the online case, we show a lower bound of 2.754 on the competitive ratio for JRP-L (and thus JRP as well), improving the previous bound of 2.64. We also study the online version of JRP-D, for which we prove that the optimal competitive ratio is 2.

Citations (46)

Summary

We haven't generated a summary for this paper yet.