Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment (2407.15809v1)

Published 22 Jul 2024 in cs.DS

Abstract: The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Tou23a] developed a non-clairvoyant framework that provided an $O(\sqrt{n \log n})$ upper bound for a wide class of generalized JRP, where $n$ is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed \textit{disjoint}. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight $O(\sqrt{n})$-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou's algorithm is $\Omega(\sqrt{n \log n})$-competitive for both of these problems.

Summary

We haven't generated a summary for this paper yet.