Discrepancy and integration in function spaces with dominating mixed smoothness (1307.2114v2)
Abstract: Optimal lower bounds for discrepancy in Besov spaces with dominating mixed smoothness are known from the work of Triebel. Hinrichs proved upper bounds in the plane. In this work we systematically analyse the problem, starting with a survey of discrepancy results and the calculation of the best known constant in Roth's Theorem. We give a larger class of point sets satisfying the optimal upper bounds than already known from Hinrichs for the plane and solve the problem in arbitrary dimension for certain parameters considering a celebrated constructions by Chen and Skriganov which are known to achieve optimal $L_2$-norm of the discrepancy function. Since those constructions are $b$-adic, we give $b$-adic characterizations of the spaces. Finally results for Triebel-Lizorkin and Sobolev spaces with dominating mixed smoothness and for the integration error are concluded.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.