Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complexity of the FIFO Stack-Up Problem (1307.1915v6)

Published 7 Jul 2013 in cs.DS and cs.CC

Abstract: We study the combinatorial FIFO stack-up problem. In delivery industry, bins have to be stacked-up from conveyor belts onto pallets with respect to customer orders. Given k sequences q_1, ..., q_k of labeled bins and a positive integer p, the aim is to stack-up the bins by iteratively removing the first bin of one of the k sequences and put it onto an initially empty pallet of unbounded capacity located at one of p stack-up places. Bins with different pallet labels have to be placed on different pallets, bins with the same pallet label have to be placed on the same pallet. After all bins for a pallet have been removed from the given sequences, the corresponding stack-up place will be cleared and becomes available for a further pallet. The FIFO stack-up problem is to find a stack-up sequence such that all pallets can be build-up with the available p stack-up places. In this paper, we introduce two digraph models for the FIFO stack-up problem, namely the processing graph and the sequence graph. We show that there is a processing of some list of sequences with at most p stack-up places if and only if the sequence graph of this list has directed pathwidth at most p-1. This connection implies that the FIFO stack-up problem is NP-complete in general, even if there are at most 6 bins for every pallet and that the problem can be solved in polynomial time, if the number p of stack-up places is assumed to be fixed. Further the processing graph allows us to show that the problem can be solved in polynomial time, if the number k of sequences is assumed to be fixed.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.