Local times for functions with finite variation: two versions of Stieltjes change of variables formula (1307.1288v1)
Abstract: We introduce two natural notions for the occupation measure of a function $V$ with finite variation. The first yields a signed measure, and the second a positive measure. By comparing two versions of the change-of-variables formula, we show that both measures are absolutely continuous with respect to Lebesgue measure. Occupation densities can be thought of as local times of $V$, and are described by a Meyer-Tanaka like formula.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.