Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regularity in time along the coarse scale flow for the incompressible Euler equations (1307.0565v9)

Published 2 Jul 2013 in math.AP and physics.flu-dyn

Abstract: One of the most remarkable features of known nonstationary solutions to the incompressible Euler equations is the phenomenon known as the Taylor hypothesis, which predicts that coarse scale averages of the velocity carry the fine scale features of the flow. In this work, we develop a time regularity theory for Euler weak solutions based on quantitative expressions of this hypothesis. We assume only that our velocity field is H\"{o}lder continuous in the spatial variables, which is well-motivated by problems related to turbulence, but precludes the application of Lagrangian methods or local well-posedness theory. Despite the dramatic lack of well-posedness, we obtain a rich theory of regularity in time for solutions, especially concerning advective derivatives. In particular, any Euler flow of class $v \in L_t\infty C_x\alpha$ has continuous advective derivatives of any order less than $\frac{\alpha}{1-\alpha}$, and every point has a trajectory passing through it that is $Cr$ for all $r < \frac{1}{1-\alpha}$, and one that is $C\infty$ if $v$ is $C1$ or $v \in \bigcap_{\alpha < 1} L_t\infty C_x\alpha$ has borderline regularity. In a follow up work, we show that all trajectories are of class $C{1/(1-\alpha)}$ in time whenever $1/(1-\alpha) \notin {\mathbb Z}$, whether or not the trajectories are unique.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.