Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rational series and asymptotic expansion for linear homogeneous divide-and-conquer recurrences

Published 30 Jun 2013 in cs.CC | (1307.0189v1)

Abstract: Among all sequences that satisfy a divide-and-conquer recurrence, the sequences that are rational with respect to a numeration system are certainly the most immediate and most essential. Nevertheless, until recently they have not been studied from the asymptotic standpoint. We show how a mechanical process permits to compute their asymptotic expansion. It is based on linear algebra, with Jordan normal form, joint spectral radius, and dilation equations. The method is compared with the analytic number theory approach, based on Dirichlet series and residues, and new ways to compute the Fourier series of the periodic functions involved in the expansion are developed. The article comes with an extended bibliography.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.