Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations (1306.6540v3)

Published 27 Jun 2013 in hep-th, math-ph, and math.MP

Abstract: In this work we have investigated some properties of classical phase-space with symplectic structures consistent, at the classical level, with two noncommutative (NC) algebras: the Doplicher-Fredenhagen-Roberts algebraic relations and the NC approach which uses an extended Hilbert space with rotational symmetry. This extended Hilbert space includes the operators $\theta{ij}$ and their conjugate momentum $\pi_{ij}$ operators. In this scenario, the equations of motion for all extended phase-space coordinates with their corresponding solutions were determined and a rotational invariant NC Newton's second law was written. As an application, we treated a NC harmonic oscillator constructed in this extended Hilbert space. We have showed precisely that its solution is still periodic if and only if the ratio between the frequencies of oscillation is a rational number. We investigated, analytically and numerically, the solutions of this NC oscillator in a two-dimensional phase-space. The result led us to conclude that noncommutativity induces a stable perturbation into the commutative standard oscillator and that the rotational symmetry is not broken. Besides, we have demonstrated through the equations of motion that a zero momentum $\pi_{ij}$ originated a constant NC parameter, namely, $\theta{ij}=const.$, which changes the original variable characteristic of $\theta{ij}$ and reduces the phase-space of the system. This result shows that the momentum $\pi_{ij}$ is relevant and cannot be neglected when we have that $\theta{ij}$ is a coordinate of the system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.