Papers
Topics
Authors
Recent
2000 character limit reached

On quasinormal modes of asymptotically anti-de Sitter black holes (1306.5760v3)

Published 24 Jun 2013 in gr-qc

Abstract: We consider the problem of quasinormal modes (QNM) for strongly hyperbolic systems on stationary, asymptotically anti-de Sitter black holes, with very general boundary conditions at infinity. We argue that for a time slicing regular at the horizon the QNM should be identified with certain Hk eigenvalues of the infinitesimal generator of the solution semigroup. Using this definition we are able to prove directly that the quasinormal frequencies form a discrete, countable subset of the complex plane, which in the globally stationary case accumulates only at infinity. We avoid any need for meromorphic extension, and the quasinormal modes are honest eigenfunctions of an operator on a Hilbert space. Our results apply to any of the linear fields usually considered (Klein-Gordon, Maxwell, Dirac etc.) on a stationary black hole background, and do not rely on any separability or analyticity properties of the metric. Our methods and results largely extend to the locally stationary case. We provide a counter-example to the conjecture that quasinormal modes are complete. We relate our approach directly to the approach via meromorphic continuation.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.