Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modular-type functions attached to Calabi-Yau varieties: integrality properties

Published 24 Jun 2013 in math.NT, hep-th, and math.GR | (1306.5662v3)

Abstract: We study the integrality properties of the coefficients of the mirror map attached to the generalized hypergeometric function ${n}F{n-1}$ with rational parameters and with a maximal unipotent monodromy. We present a conjecture on the $p$-integrality of the mirror map which can be verified experimentally. We prove its consequence on the $N$-integrality of the mirror map for the particular cases $1\leq n\leq 4$. For $n=2$ we obtain the Takeuchi's classification of arithmetic triangle groups with a cusp, and for $n=4$ we prove that $14$ examples of hypergeometric Calabi-Yau equations are the full classification of hypergeometric mirror maps with integral coefficients. As a by-product we get the integrality of the corresponding algebra of modular-type functions. These are natural generalizations of the algebra of classical modular and quasi-modular forms in the case $n=2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.