Papers
Topics
Authors
Recent
2000 character limit reached

Constrained fractional set programs and their application in local clustering and community detection

Published 14 Jun 2013 in stat.ML, cs.LG, and math.OC | (1306.3409v1)

Abstract: The (constrained) minimization of a ratio of set functions is a problem frequently occurring in clustering and community detection. As these optimization problems are typically NP-hard, one uses convex or spectral relaxations in practice. While these relaxations can be solved globally optimally, they are often too loose and thus lead to results far away from the optimum. In this paper we show that every constrained minimization problem of a ratio of non-negative set functions allows a tight relaxation into an unconstrained continuous optimization problem. This result leads to a flexible framework for solving constrained problems in network analysis. While a globally optimal solution for the resulting non-convex problem cannot be guaranteed, we outperform the loose convex or spectral relaxations by a large margin on constrained local clustering problems.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.