Papers
Topics
Authors
Recent
2000 character limit reached

Topological classification with additional symmetries from Clifford algebras

Published 11 Jun 2013 in cond-mat.mes-hall | (1306.2505v3)

Abstract: We classify topological insulators and superconductors in the presence of additional symmetries such as reflection or mirror symmetries. For each member of the 10 Altland-Zirnbauer symmetry classes, we have a Clifford algebra defined by operators of the generic (time-reversal, particle-hole, or chiral) symmetries and additional symmetries, together with gamma matrices in Dirac Hamiltonians representing topological insulators and superconductors. Following Kitaev's approach, we classify gapped phases of non-interacting fermions under additional symmetries by examining all possible distinct Dirac mass terms which can be added to the set of generators of the Clifford algebra. We find that imposing additional symmetries in effect changes symmetry classes and causes shifts in the periodic table of topological insulators and superconductors. Our results are in agreement with the classification under reflection symmetry recently reported by Chiu et al. Several examples are discussed including a topological crystalline insulator with mirror Chern numbers and mirror superconductors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.