Papers
Topics
Authors
Recent
2000 character limit reached

Feature-Gathering Dependency-Based Software Clustering Using Dedication and Modularity

Published 10 Jun 2013 in cs.SE | (1306.2096v1)

Abstract: Software clustering is one of the important techniques to comprehend software systems. However, presented techniques to date require human interactions to refine clustering results. In this paper, we proposed a novel dependency-based software clustering algorithm, SArF. SArF has two characteristics. First, SArF eliminates the need of the omnipresent-module-removing step which requires human interactions. Second, the objective of SArF is to gather relevant software features or functionalities into a cluster. To achieve them, we defined the Dedication score to infer the importance of dependencies and utilized Modularity Maximization to cluster weighted directed graphs. Two case studies and extensive comparative evaluations using open source and industrial systems show that SArF could successfully decompose the systems fitting to the authoritative decompositions from a feature viewpoint without any tailored setups and that SArF was superior to existing dependency-based software clustering studies. Besides, the case studies show that there exist measurable authoritativeness limits and that SArF nearly reached the limits.

Citations (45)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.